Khorashadizadeh, A.; Winning, M.; Zaefferer, S.; Raabe, D.: Recrystallization and grain growth in ultra fine grained CuZr alloy processed by high pressure torsion. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Winning, M.; Khorashadizadeh, A.; Raabe, D.: Characterization of the microstructure of ultra fine-grained materials processed by severe plastic deformation methods in the deformed and the annealed state. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Winning, M.; Raabe, D.: Fast, physically-based algorithms for on-line calculations of texture and anisotropy during fabrication of steel sheets. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Winning, M.; Khorashadizadeh, A.; Raabe, D.; Zaefferer, S.: Recrystallization and grain growth in ultra fine grained materials produced by high pressure torsion. Recrystallization & Grain Growth 4 RX&GG, Sheffield, UK (2010)
Uyar, F.; Wilson, S.; Winning, M.; Rollett, A. D.: Interface Texture Evolution During Grain Growth Under the Effect of Stress. Recrystallization & Grain Growth 4 RX&GG, Sheffield, UK (2010)
Uyar, F.; Gruber, J.; Lee, S.; Winning, M.; Rollett, A. D.: Stagnation of Thin Film Grain Growth under the Effect of a Stress Field. Materials Science & Technology 2009 Conference, Pittsburgh, PA, USA (2009)
Khorashadizadeh, A.; Winning, M.; Raabe, D.: Microstructure and Texture evolution during high pressure torsion of a CuZr alloy. Euromat 2009, Glasgow, UK (2009)
Khorashadizadeh, A.; Winning, M.; Raabe, D.: Microstructure and Texture evolution during high pressure torsion of a CuZr alloy. 15th International Conference on the Strength of Materials ICSMA 2009, Dresden, Germany (2009)
Khorashadizadeh, A.; Winning, M.; Zaefferer, S.; Raabe, D.: 3D tomographic EBSD characterization of crystal topology in a CuZr alloy processed by equal channel angular pressing. Interdisciplinary Symposium on 3D Microscopy, Interlaken, Switzerland (2009)
Khorashadizadeh, A.; Raabe, D.; Winning, M.: Microstructure and texture evolution during high pressure torsion of a Cu0.17wt%Zr alloy. DPG Frühjahrstagung 2009, Dresden, Germany (2009)
Schulz, S.; Winning, M.; Raabe, D.: A modified cellular automaton for the simulation of recrystallization in aluminum. ICAA 11 - International Conference on Aluminium Alloys 2008, Aachen, Germany (2008)
Khorashadizadeh, A.; Raabe, D.; Winning, M.: Three-dimensional tomographic EBSD measurements of the crystal topology in heavily deformed ultra fine grained pure Cu and Cu-0.17wt%Zr obtained from ECAP and HPT. 4th International Conference on Nanomaterials by Severe Plastic Deformation nanoSPD 4, Goslar, Germany (2008)
Brahme, A.; Winning, M.; Raabe, D.: Texture Component Model for Predicting Recrystallization Textures. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Winning, M.; Raabe, D.: Influence of Grain Boundary Mobility on Texture Evolution during Recrystallization. 15 th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.