Azzam, W.; Subaihi, A.; Rohwerder, M.; Bashir, A.; Terfort, A.; Zharnikov, M.: Odd-even effects in aryl-substituted alkanethiolate SAMs: nonsymmetrical attachment of aryl unit and its impact on the SAM structure. Physical Chemistry Chemical Physics 26 (9), pp. 7563 - 7572 (2024)
Azzam, W.; Subaihi, A.; Rohwerder, M.; Zharnikov, M.; Bashir, A.: Polymorphism and Building-Block-Resolved STM Imaging of Self-Assembled Monolayers of 4-Fluorobenzenemethanethiol on Au(111). ChemPhysChem 23 (19), e202200347 (2022)
Azzam, W.; Zharnikov, M.; Rohwerder, M.; Bashir, A.: Functional group selective STM Imaging in self-assembled monolayers: Benzeneselenol on Au(111). Applied Surface Science 427 (Part B), pp. 581 - 586 (2018)
Azzam, W.; Bashir, A.; Ebqa'Ai, M. A.; Almalki, H.; Al-Refaie, N.: Unexpected Formation of Dense Phases along with Temperature-Induced, Self-Assembled Terphenylthiolate Monolayers on Au(111). The Journal of Physical Chemistry C 120 (31), pp. 17308 - 17322 (2016)
Tarzimoghadam, Z.; Rohwerder, M.; Merzlikin, S. V.; Bashir, A.; Yedra , L.; Eswara, S.; Ponge, D.; Raabe, D.: Multi-scale and spatially resolved hydrogen mapping in a Ni–Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718. Acta Materialia 109, pp. 69 - 81 (2016)
Dandapani, V.; Tran, T. H.; Bashir, A.; Evers, S.; Rohwerder, M.: Hydrogen Permeation as a Tool for Quantitative Characterization of Oxygen Reduction Kinetics at Buried Metal-Coating Interfaces. Electrochimica Acta 189, pp. 111 - 117 (2016)
Dandapani, V.; Altin, A.; Merola, C.; Bashir, A.; Heinen, E.; Rohwerder, M.: Probing the buried metal-organic coating interfacial reaction kinetic mechanisms by a hydrogen permeation based potentiometric approach. Journal of the Electrochemical Society 163 (13), pp. C778 - C783 (2016)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.