Diehl, M.; Shanthraj, P.; Roters, F.; Raabe, D.: From Crystal Plasticity to Forming Simulations: The "Virtual Laboratory". M2i Conference "High Tech Materials: your world - our business", Sint Michielgestel, The Netherlands (2014)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Roters, F.; Raabe, D.: Stress and Strain Partitioning in Multiphase Alloys: An Integrated Experimental-Numerical Analysis. Winter School 2014, Research Training Group 1483,
Karlsruher Intitut f. Technologie (KIT), Karlsruhe, Germany (2014)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Roters, F.; Raabe, D.: Stress and Strain Partitioning in Multiphase Alloys: An Integrated Experimental-Numerical Analysis. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2013)
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.: Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2013)
Yan, D.; Tasan, C. C.; Ponge, D.; Diehl, M.; Roters, F.; Hartmaier, A.; Raabe, D.: Experimental-Numerical Analysis of Stress and Strain Partitioning in Dual Phase Steel. 10th Materials Day, Joint workshop of the Materials Research Department (MRD) and the IMPRS-SurMat, Bochum, Germany (2012)
Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Using a "Virtual Laboratory" to Derive Mechanical Properties of Complex Microstructures. 11th GAMM-Seminar on Microstructures, Essen, Germany (2012)
Diehl, M.; Eisenlohr, P.; Roters, F.; Tasan, C. C.; Raabe, D.: Using a "Virtual Laboratory" to Derive Mechanical Properties of Complex Microstructures. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2011)
Diehl, M.: High Resolution Crystal Plasticity Simulations. Dissertation, Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany (2015)
Diehl, M.: A Spectral Method Using Fast Fourier Transform to Solve Elastoviscoplastic Mechanical Boundary Value Problems. Diploma, TUM, München, Germany (2010)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.