Juricic, C.; Pinto, H.; Cardinali, D.; Klaus, M.; Genzel, C.; Pyzalla, A. R.: Evolution of microstructure and internal stresses in multi-phase oxide scales grown on (110) surfaces of iron single crystals at 650 °C. Oxidation of Metals 73 (1-2), pp. 115 - 138 (2010)
Juricic, C.; Pinto, H.; Cardinali, D.; Klaus, M.; Genzel, C.; Pyzalla, A. R.: Effect of Substrate Grain Size on the Growth, Texture and Internal Stresses of Iron Oxide Scales Forming at 450 °C. Oxidation of Metals 73 (1-2), pp. 15 - 41 (2010)
Juricic, C.; Pinto, H.; Wroblewski, T.; Pyzalla, A.: Dependence of Oxidation Behavior and Residual Stresses in Oxide Layers on Armco Iron Substrate Surface condition. Materials Science Forum 524-525, pp. 963 - 968 (2006)
Pinto, H.; Juricic, C.; Genzel, C.; Pyzalla, A. R.: Effect of substrate microstructure on phase, texture and internal stress evolution in iron oxide layers grown at 650 °C. Zeit- und temperaturaufgelöste Röntgen-Pulver-Diffraktometrie VIII, Fraunhofer ICT, Pfinztal, Germany (2007)
Juricic, C.; Pinto, H.; Pyzalla, A. R.: In-situ phase analysis and stress evolution in iron oxides on iron poly and single crystals. Size-Strain V, Garmisch-Partenkirchen (2007)
Juricic, C.; Pinto, H.; Genzel, C.; Pyzalla, A. R.: Effect of substrate orientation on the phase and internal stress evolution in iron oxide layers. MECASENS IV, Wien, Austria (2007)
Juricic, C.; Pinto, H.; Pyzalla, A. R.: Wachstumsspannungen und Eigenspannungen in Oxidschichten auf Armcoeisensubstraten. FA 13 Eigenspannungen der AWT, Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V., Remscheid (2007)
Juricic, C.: Eigenspannungsentwicklung in Oxidschichten auf ein- und polykristallinem Eisen. FA 13 Eigenspannungen der AWT, Lehrstuhl für Umformtechnik und Gießereiwesen, TU München, Germany (2006)
Juricic, C.; Pinto, H.; Wrobleweski, T.; Pyzalla, A.: Internal Stresses in Oxid Layers on Iron Polycrystals. User Meeting HASYLAB bei DESY, Hamburg, Germany (2006)
Juricic, C.; Pinto, H.; Wroblewski, T.; Pyzalla, A.: The Effect of Crystal Orientation on the Oxidation Behavior of Iran Substrates. SNI 2006, German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities, Hamburg, Germany (2006)
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.