Pinto, H.; Barbatti, C.; Guio, A.; Jahn, A.; Standfuß, J.; Pyzalla, A. R.: Application of EBSD to the characterization of induction-assisted welds in high strength. Electron Backscatter Diffraction Meeting, Sheffield, UK (2008)
Coelho, R. S.; Kostka, A.; Zettler, R.; dos Santos, J.; Pyzalla, A. R.: On the microstructure and residual stresses in friction-stir dissimilar AA6040 aluminium alloy to AZ31 magnesium alloy weld. MECASENS IV, Wien (2007)
Garcia, J.; Kipperer, K.; Barbatti, C.; Pyzalla, A. R.: Study of Microstructure and Kinetics of FCC-Free Surface Layer Formation in Novel Hardmetals with Complex Co/Ni/Fe Binders. Euromat 2007, Nürnberg, Germany (2007)
Kostka, A.; Coelho, R.; dos Santos, J.; Pyzalla, A. R.: Microstructure and Mechanical Properties of Aluminium - Steel Friction Stir Welds. Small Scale Plasticity Workshop, Braunwald, Switzerland (2007)
Kostka, A.; Coelho, R.; Zettler, R.; dos Santos, J.; Pyzalla, A. R.: Microstructure and Residual Stresses in an AA6040-T4/AZ31B Friction-Stir Weld. Euromat 2007, Nürnberg, Germany (2007)
Moscicki, M.; Pinto, H.; Paulmann, C.; Pyzalla, A. R.: An Automatic Procedure for Residual Stress Analysis in Individual Crystallites of a Polychrystalline Material. Euromat 2007, Nürnberg, Germany (2007)
Pinto, H.; Silva, P. A.; Kostka, A.; Chladil, H. F.; Clemens, H.; Pyzalla, A. R.: Microstructure and Residual Stress Formation in Oxide Layers Grown on the Gamma-Ti–45Al–5Nb Alloy. Euromat 2007, Nürnberg (2007)
Barbatti, C.; Sket, F.; di Prinzio, A.; Staia, M.; Garcia, J.; Pyzalla, A. R.: Influence of Binder Composition, Nitridation and Treatment of Coatings on the Microstructure; Corrosion and Wear of (W,Ti)C-(Ta,Nb)C-Co/Fi/Fe Hardmetals. PM Training Course, Kosice, Slovakia (2007)
Camin, B.; Huppmann, M.; Pyzalla, A.; di Michiel, M.; Buslaps, T.; Reimers, W.: In-situ Synchrotron Tomographie des partikelverstärkten Verbundwerkstoffes AA6061 mit 22% Al2O3 unter Kriechbedingungen. SNI 2006, German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities, Hamburg, Germany (2006)
Juricic, C.; Pinto, H.; Wroblewski, T.; Pyzalla, A.: The Effect of Crystal Orientation on the Oxidation Behavior of Iran Substrates. SNI 2006, German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities, Hamburg, Germany (2006)
Pinto, H.; Sawalmih, A.; Raabe, D.; Pyzalla, A.: Residual Stresses in the Exoskeleton of a Homarus americanus Lobster. SNI 2006, German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities, Hamburg, Germany (2006)
Pinto, H.; Sawalmih, A.; Raabe, D.; Pyzalla, A.: Residual Stresses in the Exoskeleton of a Homarus americanus Lobster. SNI 2006, German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities, Hamburg, Germany (2006)
Silva, P.; Pinto, H.; Kostka, A.; Chladil, H. F.; Pyzalla, A.: Microstructure and Residual Stress Formation in Oxide Layers Grown in High Niobium Containing g-TiAl Based Alloy. SNI 2006, German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities, Hamburg, Germany (2006)
Pinto, H.; Pyzalla, A.; Hackl, H.; Bruckner, J.: A comparative study of microstructure and residual stresses of CMT-, MIG- and laser-hybrid welds. 7th European Conference on Residual Stresses (ECRS 7), Berlin, Germany (2006)
Pinto, H.; Sawalmih, A.; Raabe, D.; Pyzalla, A.: Residual Stresses in the Exoskeleton of a Homarus americanus Lobster. 7th European Conference on Residual Stresses (ECRS 7), Berlin, Germany (2006)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
Electron microscopes offer unique capabilities to probe materials with extremely high spatial resolution. Recent advancements in in situ platforms and electron detectors have opened novel pathways to explore local properties and the dynamic behaviour of materials.