Fabritius, H.; Hild, S.; Nikolov, S.; Ziegler, A.; Raabe, D.; Friák, M.; Neugebauer, J.: Variations in the constructional morphology of crustacean skeletal elements at different hierarchical levels. Third International Conference on Mechanics of Biomaterials & Tissues ICMOBT 2009, Clearwater, FL, USA (2009)
Ma, D.; Friák, M.; Knezevic, M.; Kalidindi, S. R.; Lebensohn, R. A.; Roters, F.; Neugebauer, J.; Raabe, D.: Polycrystal coarse graining of elastic properties for Ti-Nb biomedical grades using ab-initio single crystal elastic constants. International Plasticity Conference 2009, Virgin Islands, USA (2009)
Nikolov, S.; Sachs, C.; Fabritius, H.; Raabe, D.; Petrov, M.; Friák, M.; Neugebauer, J.: Modeling of the mechanical properties of lobster cuticle from ab initio to macroscale: How nature designs multifunctional composites with optimal properties. International Plasticity Conference 2009, Virgin Islands, USA (2009)
Counts, W. A.; Friák, M.; Battaile, C.; Raabe, D.; Neugebauer, J.: Multiscale Prediction of Polycrystal Elastic Properties of Ultralight Weight Mg-Li Alloys using Ab Initio and FEM Approaches. MRS Fall Conference 2008, Boston, MA, USA (2008)
Knezevic, M.; Ma, D.; Raabe, D.; Kalidindi, S. R.; Friák, M.; Neugebauer, J.: Application of Spectral Methods for Anisotropy Design of Ti-Nb Polycrystals for Biomedical Applications based on ab Initio Elastic Single Crystal Constants and Fast Fourier Homogenization. MRS Fall Conference 2008, Boston, MA, USA (2008)
Petrov, M.; Friák, M.; Lymperakis, L.; Neugebauer, J.; Raabe, D.: Ground-state structure and elastic anisotropy of crystalline alpha-chitin: An ab-initio based conformational analysis. Materials Research Society meeting (MRS), Boston, MA, USA (2008)
Udyansky, A.; Bugaev, V.; von Pezold, J.; Friák, M.; Neugebauer, J.: Modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution using embedded atom method potential. Contemporary Problems of Metal Physics, Kiev, Ukraine (2008)
Ma, A.; Friák, M.; Neugebauer, J.; Raabe, D.: Ab initio based design of alloys. MS&T'08, Symposium: Discovery and Optimization of Materials Through Computational Design, David Lawrence Convention Center, Pittsburgh, PA, USA (2008)
Counts, W. A.; Ma, D.; Friák, M.; Neugebauer, J.; Raabe, D.: Multiscale design of aluminium alloys based on ab-initio methods. ICAA 11 – 11th International Conference on Aluminium Alloys 2008, Aachen, Germany (2008)
Raabe, D.; Friak, M.; Neugebauer, J.; Counts, W. A.: Homogenization in Polycrystal Mechanics on the Basis of First Principles Simulations. IUTAM Symposium on Variational Concepts in Materials Mechanics, Ruhr-Universität Bochum, Germany (2008)
Friák, M.; Neugebauer, J.: Ab initio study on elastic properties of Fe3Al-based alloys. Materials Science and Engineering (MSE'08), Nürnberg, Germany (2008)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Atomistic modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Friák, M.; Sander, B.; Ma, D.; Raabe, D.; Neugebauer, J.: Theory-guided Design of Ti-binaries for Biomedical Applications. 11th International Symposium on Physics of Materials (ISPMA-11), Prague, Czech Republic (2008)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Atomistic modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution. XVII International Materials Research Congress 2008, Cancun, Mexico (2008)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…