Katsounaros, I.; Meier, J. C.; Mayrhofer, K. J. J.: The impact of chloride ions and the catalyst loading on the reduction of H2O2 on high-surface-area platinum catalysts. Electrochimica Acta 110, pp. 790 - 795 (2013)
Klemm, S. O.; Karschin, A.; Mechler, A. K.; Topalov, A. A.; Katsounaros, I.; Mayrhofer, K. J. J.: Corrigendum to “Time and potential resolved dissolution analysis of rhodium using a microelectrochemical flow cell coupled to an ICP-MS” [Journal of Electroanalytical Chemistry 677–680 (2012) 50–55] (S1572665712001865) (10.1016/j.jelechem.2012.05.006)). Journal of Electroanalytical Chemistry 693, p. 127 (2013)
Katsounaros, I.; Mayrhofer, K. J. J.: The influence of non-covalent interactions on the hydrogen peroxide electrochemistry on platinum in alkaline electrolytes. Chemical Communications 48 (53), pp. 6660 - 6662 (2012)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.