Kawano, T.; Renner, F. U.: Studies on Wetting Behaviour of Hot-dip Galvanizing Process by use of Model Specimens with Tailored Surface Oxides. Surf. Int. Anal. 44 (8), pp. 1009 - 1012 (2012)
Kawano, T.; Renner, F. U.: Tailoring Model Surface and Wetting Experiment for a Fundamental Understanding of Hot-dip Galvanizing. ISIJ International 51, 10, pp. 1703 - 1709 (2011)
Kawano, T.; Renner, F. U.: Tailoring Model Surfaces and Wettability Measurement for a Fundamental Understanding of Hot-dip Galvanizing. DPG Meeting, Regensburg, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.