Dsouza, R.; Huber, L.; Grabowski, B.; Neugebauer, J.: Approximating the impact of nuclear quantum effects on thermodynamic properties of crystalline solids by temperature remapping. Physical Review B 105 (18), 184111 (2022)
Mendive-Tapia, E.; Neugebauer, J.; Hickel, T.: Ab initio calculation of the magnetic Gibbs free energy of materials using magnetically constrained supercells. Physical Review B 105 (16), 064425 (2022)
Sreekala, L.; Dey, P.; Hickel, T.; Neugebauer, J.: Unveiling nonmonotonic chemical trends in the solubility of H in complex Fe–Cr–Mn carbides by means of ab initio based approaches. Physical Review Materials 6 (1), 014403 (2022)
Freysoldt, C.; Neugebauer, J.; Tan, A. M. Z.; Hennig, R. G.: Limitations of empirical supercell extrapolation for calculations of point defects in bulk, at surfaces, and in two-dimensional materials. Physical Review B 105 (1), 014103 (2022)
Alam, M.; Lymperakis, L.; Groh, S.; Neugebauer, J.: MEAM interatomic potentials of Ni, Re, and Ni–Re alloys for atomistic fracture simulations. Modelling and Simulation in Materials Science and Engineering 30 (1), 015002 (2021)
Wang, N.; Freysoldt, C.; Zhang, S.; Liebscher, C.; Neugebauer, J.: Segmentation of Static and Dynamic Atomic-Resolution Microscopy Data Sets with Unsupervised Machine Learning Using Local Symmetry Descriptors. Microscopy and Microanalysis 27 (6), pp. 1454 - 1464 (2021)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.