Gault, B.: Can machine learning bring atom probe microscopy closer to analytical atomic-scale tomography. 12th International Symposium on Atomic Level Characterizations for New Materials and Devices (ALC 19), Kyoto, Japan (2019)
Kasian, O.; Schweinar, K.; Cherevko, S.; Gault, B.; Mayrhofer, K. J. J.: Correlating Atomic Scale Structure with Reaction Mechanisms: Electrocatalytic Evolution of Oxygen. 70th Annual Meeting of the International Society of Electrochemistry, Durban, South Africa (2019)
Gault, B.: An introduction to atom probe tomography: from fundamentals to atomic-scale insights into engineering materials. Rolls Royce Lunchtime Seminar, Derby, UK (2019)
Gault, B.: An introduction to atom probe tomography: from fundamentals to atomic-scale insights into engineering materials. Seminar, University of Manchester, Manchester, UK (2019)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.