Neugebauer, J.; Yang, J.; Todorova, M.; Hickel, T.: Constructing Defect Phase Diagrams from Ab Initio Calculations and CALPHAD Concepts. TMS Annual Meeting and Exhibition, San Diego, CA, USA (2023)
Neugebauer, J.; Körmann, F.; Hickel, T.: Ab Initio Descriptors to Guide Materials Design in High-dimensional Chemical and Structural Configuration Spaces. TMS Annual Meeting and Exhibition, San Diego, CA, USA (2022)
Neugebauer, J.; Zendegani, A.; Hickel, T.: Construction and Application of Defect Phase Diagrams. TMS Annual Meeting and Exhibition, Anaheim, CA, USA (2022)
Neugebauer, J.; Zendegani, A.; Hickel, T.: Defect phase diagrams as novel tool to understand and design tailored defect structures in advanced steels. Thermec2021, Virtual Meeting, Vienna, Austria (2021)
Hickel, T.: Application of Density Functional Theory in the Context of Phase Diagram Modelling. MSIT Winter School on Materials Chemistry, Virtual Event (2021)
Janßen, J.; Hickel, T.; Neugebauer, J.: pyiron – an integrated development environment for ab initio thermodynamics. Potential Workshop, ICAMS, virtual, Bochum, Germany (2021)
Freysoldt, C.; Hickel, T.; Janßen, J.; Wang, N.; Zendegani, A.: High-throughput optimization of finite temperature phase stabilities: Concepts and application. Coffee with Max Planck, virtual seminar organized by the MPIE, Düsseldorf, Germany (2021)
Hickel, T.; Freysoldt, C.; Janßen, J.; Wang, N.; Zendegani, A.: High-throughput optimization of finite temperature phase stabilities: Concepts and application. Coffee with Max Planck, virtual seminar organized by the MPIE, Düsseldorf, Germany (2021)
Janßen, J.; Hickel, T.; Neugebauer, J.: pyiron – an integrated development environment for ab initio thermodynamics. AMS Seminar, virtual, Bochum, Germany (2020)
Neugebauer, J.; Lymperakis, L.; Janßen, J.; Huber, L.; Hickel, T.: Modeling crystal growth and materials design in high dimensional chemical and structural configuration spaces. German Conference on Crystal Growth DKT 2020, München/Garching, Germany (2020)
Hickel, T.: Application of Density Functional Theory in the Context of Phase Diagram Modelling. MSIT Winter School on Materials Chemistry, Virtual Event, Castle Ringberg, Tegernsee (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…