Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Šlapáková, M.; Liebscher, C.; Kumar, S.; Stein, F.: Deformation Mechanism of Single Phase C14 Laves Phase NbFe2 Studied by TEM. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Stein, F.; Horiuchi, T.: Discontinuous Precipitation of the Complex Intermetallic Phase Nb2Co7 from Supersaturated Co Solid Solution. Thermec 2016, Graz, Austria (2016)
Stein, F.; Luo, W.; Li, X.; Palm, M.: Diffusion couples as a "new" method for material synthesis. 61. Metallkunde-Kolloquium - Werkstoffforschung für Wirtschaft und Gesellschaft, Lech am Arlberg, Austria (2015)
Li, X.; Scherf, A.; Heilmaier, M.; Stein, F.: Coarsening Kinetics of Lamellar FeAl + FeAl2 Microstructures in Al-rich Fe–Al Alloys. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Li, X.; Scherf, A.; Janda, D.; Heilmaier, M.; Stein, F.: Two-Phase Binary Fe–Al Alloys with Fine-Scaled Lamellar Microstructure and the Effect of Ternary Additions on Microstructure, Stability, and Mechanical Behavior. 123HiMAT-2015, Advanced High-Temperature Materials Technology for Sustainable and Reliable Power Engineering, Sapporo, Japan (2015)
Scherf, A.; Li, X.; Stein, F.; Heilmaier, M.: Creep Properties and Microstructure of Binary Fe-Al Alloys with a Fine-Scaled, Lamellar Microstructure. Creep 2015, 13th International Conference on Creep and Fracture of Engineering Materials and Structures, Toulouse, France (2015)
Scherf, A.; Li, X.; Stein, F.; Heilmaier, M.: Creep Properties and Microstructure of Binary Fe–Al Alloys with a Fine-Scaled, Lamellar Microstructure. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Stein, F.: Phase Diagrams and Phase Transformations. Intermetallics 2015 Conference, School on Thermodynamics of Intermetallics, Educational Center Kloster Banz, Staffelstein, Germany (2015)
Li, X.; Stein, F.; Scherf, A.; Janda, D.; Heilmaier, M.: Investigation of Fe–Al Based in situ Composites with Fine Lamellar Eutectoid Microstructure. MRS Fall Meeting 2014
, Boston, MA, USA (2014)
Stein, F.; He, C.: The Usefulness and Applicability of the Alkemade Theorem for the Determination of Ternary Phase Diagrams with Intermetallic Phases. TOFA 2014 – 14th Discussion Meeting on Thermodynamics of Alloys, Brno, Czech Republic (2014)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
We simulate the ionization contrast in field ion microscopy arising from the electronic structure of the imaged surface. For this DFT calculations of the electrified surface are combined with the Tersoff-Hamann approximation to electron tunneling. The approach allows to explain the chemical contrast observed for NiRe alloys.