Jenko, D.; Palm, M.: Transmission electron microscopy of the Fe–Al–Ti–B alloys with additions of Mo. 19th International Microscopy Congress (IMC19), Sidney, Australia (2018)
Prokopčáková, P.; Švec, M.; Lotfian, S.; Palm, M.: Microstructure – property relationships of iron aluminides. 64. Metallkunde-Kolloquium Montanuniversität Leoben, Lech am Arlberg, Austria (2018)
Peng, J.; Moszner, F.; Vogel, D.; Palm, M.: Influence of the Al content on the aqueous corrosion resistance of binary Fe–Al alloys in H2SO4. Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany (2017)
Peng, J.; Vogel, D.; Palm, M.: Influence of the Al content on the corrosion resistance of binary Fe–Al alloys in H2SO4. EUROMAT 2017 – European Congress and Exhibition on Advanced Materials and Processes, Thessaloniki, Greece (2017)
Palm, M.: Development and processing of advanced iron aluminide alloys for application at high temperatures. 62. Metallkunde Kolloquium
, Lech am Arlberg, Austria (2016)
Marx, V. M.; Palm, M.: The wet and hot corrosion behavior of iron aluminides. THERMEC 2016 – Int. Conf. on Processing & Manufacturing of Advanced Materials
, Graz, Austria (2016)
Palm, M.: Iron aluminides: From alloy development to processing. The Materials Chain from Discovery to Production (contributed talk), Bochum, Germany (2016)
Hasemann, G.; Gang, F.; Palm, M.; Bogomol, I.; Krüger , M.: Determining the ternary eutectic alloy composition on the Mo-rich side of the Mo–Si–B system. Advances in Materials & Processing Technologies – AMPT 2015, Madrid, Spain (2015)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
This work led so far to several high impact publications: for the first time nanobeam diffraction (NBD) orientation mapping was used on atom probe tips, thereby enabling the high throughput characterization of grain boundary segregation as well as the crystallographic identification of phases.