Zaefferer, S.; Shan, Y.; Madivala, M.: Nano-indentation and electron channeling contrast imaging (ECCI) to understand the interaction of hydrogen and dislocations in a high-Mn TWIP steel. Euromat 2019, Stockholm, Sweden (2019)
Zaefferer, S.; Shan, Y.; Madivala, M.: Combination of nano-indentation and electron channeling contrast imaging (ECCI) to understand the interaction of hydrogen and dislocations in a high-Mn TWIP steel. Nanobrücken 2018, Erlangen, Germany (2018)
Shan, Y.: Investigation on the Influence of Hydrogen on Dislocation Formation during Nanoindentation in TWIP Steels. Master, RWTH Aachen, Aachen, Germany (2018)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…