Dandapani, V.; Tran, T. H.; Bashir, A.; Evers, S.; Rohwerder, M.: Hydrogen Permeation as a Tool for Quantitative Characterization of Oxygen Reduction Kinetics at Buried Metal-Coating Interfaces. Electrochimica Acta 189, pp. 111 - 117 (2016)
Dandapani, V.; Altin, A.; Merola, C.; Bashir, A.; Heinen, E.; Rohwerder, M.: Probing the buried metal-organic coating interfacial reaction kinetic mechanisms by a hydrogen permeation based potentiometric approach. Journal of the Electrochemical Society 163 (13), pp. C778 - C783 (2016)
Rohwerder, M.; Dandapani, V.: A Novel Potentiometric Approach to a Quantitative Characterization of Oxygen Reduction Kinetics at Buried Interfaces. 11th International Symposium on Electrochemical Micro & Nanosystem Technologies (EMNT2016), Brussels, Belgium (2016)
Dandapani, V.: Hydrogen Permeation based Potentiometry as a New Quantification Tool for Electrochemical Reactivity at Buried Interfaces and under Nanoscopic Electrolyte Layers. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.