Kim, Y.-J.; Kim, H.; Kang, M.; Rhee, K.; Shin, S. Y.; Lee, S.: Correlation of microstructure, chip-forming properties, and dynamic torsional properties in free-machining steels. Metallurgical and Materials Transactions A 44 (10), pp. 4613 - 4625 (2013)
Shin, S. Y.: Effects of microstructure on tensile, charpy impact, and crack tip opening displacement properties of two API X80 pipeline steels. Metallurgical and Materials Transactions A 44 (6), pp. 2613 - 2624 (2013)
Sohn, S. S.; Han, S. Y.; Shin, S. Y.; Bae, J.; Lee, S.: Effects of microstructure and pre-strain on Bauschinger effect in API X70 and X80 linepipe steels. Metals and Materials International 19 (3), pp. 423 - 431 (2013)
Sohn, S. S.; Han, S. Y.; Shin, S. Y.; Bae, J.; Lee, S.: Analysis and estimation of the yield strength of API X70 and X80 linepipe steels by double-cycle simulation tests. Metals and Materials International 19 (3), pp. 377 - 388 (2013)
Kim, H.; Kang, M.; Shin, S. Y.; Lee, S.: Alligatoring phenomenon occurring during hot rolling of free-machining steel wire rods. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 568, pp. 8 - 19 (2013)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Atom probe tomography (APT) is a material analysis technique capable of 3D compositional mapping with sub-nanometer resolution. The specimens for APT are shaped as sharp needles (~100 nm radius at the apex), so as to reach the necessary intense electrostatic fields, and are typically prepared via focused ion beam (FIB) based milling.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.