Aota, L. S.; Jung, C.; Zhang, S.; Kim, S.-H.; Gault, B.: Revealing Compositional Evolution of PdAu Electrocatalyst by Atom Probe Tomography. ACS Energy Letters 8 (6), pp. 2824 - 2830 (2023)
Bueno Villoro, R.; Zavanelli, D.; Jung, C.; Mattlat, D. A.; Naderloo, R. H.; Pérez, N. A.; Nielsch, K.; Snyder, G. J.; Scheu, C.; He, R.et al.; Zhang, S.: Grain Boundary Phases in NbFeSb Half-Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials. Advanced Energy Materials 13 (13), 2204321 (2023)
Ulrich, N.; Schäfer, M.; Römer, M.; Straub, S. D.; Zhang, S.; Brötz, J.; Trautmann, C.; Scheu, C.; Etzold, B. J. M.; Toimil-Molares, M. E.: Cu nanowire networks with well-defined geometrical parameters for catalytic electrochemical CO2 reduction. ACS Applied Nano Materials 6 (6), pp. 4190 - 4200 (2023)
Guo, Y.; Jia, L.; He, J.; Zhang, S.; Li, Z.; Zhang, H.: Interplay between eutectic and dendritic growths dominated by Si content for Nb–Si–Ti alloys via rapid solidification. Journal of Manufacturing Science and Engineering, Transactions of the ASME 144 (6), 061007 (2022)
Ni, B.; González-Rubio, G.; Kirner, F.; Zhang, S.; Cölfen, H.: A Symmetry-based kinematic theory for nanocrystal morphology design. Angewandte Chemie, International Edition in English 61 (20), e202200753 (2022)
Gahlawat, S.; Ahmet, I. Y.; Schnell, P.; Levine, I.; Zhang, S.; Ingole, P. P.; Abdi, F. F.: Enhancing the photon absorption and charge carrier dynamics of BaSnO3 photoanodes via intrinsic and extrinsic defects. Chemistry of Materials 34 (10), pp. 4320 - 4335 (2022)
Pei, Z.; Zhang, S.; Lei, Y.; Zhang, F.; Chen, M.: Decoupling between Shockley partials and stacking faults strengthens multiprincipal element alloys. Proceedings of the National Academy of Sciences of the United States of America 118 (51), e2114167118 (2021)
Wang, N.; Freysoldt, C.; Zhang, S.; Liebscher, C.; Neugebauer, J.: Segmentation of Static and Dynamic Atomic-Resolution Microscopy Data Sets with Unsupervised Machine Learning Using Local Symmetry Descriptors. Microscopy and Microanalysis 27 (6), pp. 1454 - 1464 (2021)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.