Neugebauer, J.; Zendegani, A.; Hickel, T.: Construction and Application of Defect Phase Diagrams. TMS Annual Meeting and Exhibition, Anaheim, CA, USA (2022)
Todorova, M.; Surendralal, S.; Wippermann, S. M.; Deißenbeck, F.; Neugebauer, J.: Processes at solid/liquid interfaces – insights from ab initio molecular dynamics simulations with potential control. AMaSiS 2021 Online - Applied Mathematics and Simulation for Semiconductors and Electrochemical Systems, Berlin, Germany (2021)
Neugebauer, J.: Ab initio descriptors to guide materials design in high-dimensional chemical and structural configuration spaces. Münchner Physik Kolloquium - Festkolloquium für Professor Winfried Petry, Technische Universität München, delivered online, München, Germany (2021)
Neugebauer, J.: Efficient sampling of high-dimensional chemical and thermodynamic configuration spaces. ELRC2020: Invitation to Complex High-Dimensional Energy Landscapes Reunion Conference II, Delivered online, Lake Arrowhead, CA, USA (2021)
Neugebauer, J.; Zendegani, A.; Hickel, T.: Defect phase diagrams as novel tool to understand and design tailored defect structures in advanced steels. Thermec2021, Virtual Meeting, Vienna, Austria (2021)
Todorova, M.; Surendralal, S.; Wippermann, S. M.; Deißenbeck, F.; Neugebauer, J.: Insights into processes at electrochemical solid/liquid interfaces from ab initio molecular dynamics simulations. ICTP-Workshop on “Physics and Chemistry of Solid/Liquid Interfaces for Energy Conversion and Storage”, Virtual Meeting, Trieste, Italy (2021)
Neugebauer, J.: Materials design by exploiting high-dimensional chemical and structural configuration spaces. Kolloquium im Rahmen des SFB 986, Technische Universität Hamburg-Harburg, Online Meeting, Hamburg-Harburg, Germany (2021)
Janßen, J.; Hickel, T.; Neugebauer, J.: pyiron – an integrated development environment for ab initio thermodynamics. Potential Workshop, ICAMS, virtual, Bochum, Germany (2021)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.