Singh, M. P.; Woods, E.; Kim, S.-H.; Jung, C.; Aota, L. S.; Gault, B.: Facilitating the Systematic Nanoscale Study of Battery Materials by Atom Probe Tomography through in-situ Metal Coating. Batteries & Supercaps 7 (2), e202300403 (2023)
Kim, S.-H.; Dong, K.; Zhao, H.; El-Zoka, A.; Zhou, X.; Woods, E.; Giuliani, F.; Manke, I.; Raabe, D.; Gault, B.: Understanding the Degradation of a Model Si Anode in a Li-Ion Battery at the Atomic Scale. The Journal of Physical Chemistry Letters 13 (36), pp. 8416 - 8421 (2022)
Ye, Y.; Lish, S. D.; Xu, L.; Woods, E.; Chen, S.; Ren, Y.; Wittmann, M. W.; Xu, H.; Gault, B.; Baker, I.: Exceptional Soft Magnetic Properties of an Ordered Multi-principal Element Alloy with Disordered Nanoprecipitates. High Entropy Alloys & Materials (2022)
Tutwiler, V.; Litvinov, R. I.; Protopopova, A.; Nagaswami, C.; Villa, C.; Woods, E.; Abdulmalik, O.; Siegel, D. L.; Russell, J. E.; Muzykantov, V. R.et al.; Lam, W. A.; Myers, D. R.; Weisel, J. W.: Pathologically stiff erythrocytes impede contraction of blood clots. Journal of Thrombosis and Haemostasis 19 (8), pp. 1990 - 2001 (2021)
Woods, E.; Aota, L. S.; Schwarz, T.; Kim, S.-H.; Douglas, J. O.; Singh, M. P.; Gault, B.: In-situ cryogenic protective layers and metal coatings in cryogenic FIB. IMC20 - 20th International Microscopy Congress - Pre-congress workshop, Cryogenic Atom Probe Tomography, Busan, South Korea (2023)
Schwarz, T.; Yang, J.; Aota, L. S.; Woods, E.; Zhou, X.; Neugebauer, J.; Todorova, M.; McCaroll, I.; Gault, B.: Analysis of the reactive solid-liquid interface during the corrosion of magnesium at the near atomic level using cryo-atom probe tomography. Aqueous Corrosion Gordon Research Conference (GRC) 2024, Corrosion Challenges and Opportunities for the Energy Transition, New London, CT, USA (2024)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.