Pandey, P.; Makineni, S. K.; Gault, B.; Chattopadhyay, K.: On the origin of a remarkable increase in the strength and stability of an Al rich Al–Ni eutectic alloy by Zr addition. Acta Materialia 170, pp. 205 - 217 (2019)
Zhang, Q.; Makineni, S. K.; Allison, J. E.; Zhao, J.-C.: Effective evaluation of interfacial energy by matching precipitate sizes measured along a composition gradient with Kampmann-Wagner numerical (KWN) modeling. Scripta Materialia 160, pp. 70 - 74 (2019)
Lenz, M.; Wu, M.; He, J.; Makineni, S. K.; Gault, B.; Raabe, D.; Neumeier, S.; Spiecker, E.: Atomic Structure and Chemical Composition of Planar Fault Structures in Co-Base Superalloys. 14th International Symposium on Superalloys, Superalloys 2021, Seven Springs, PA, USA, September 12, 2021 - September 16, 2021. Minerals, Metals and Materials Series, pp. 920 - 928 (2020)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…