Frommeyer, G.; Jiménez, J. A.: Structural Superplasticity at Higher Strain Rates of Hypereutectoid Fe-5.5Al-1Sn-1Cr-1.3C Steel. Metallurgical and Materials Transaction 36 A, pp. 295 - 300 (2005)
Gnauk, J.; Wenke, R.; Frommeyer, G.: Macroscopic modeling of solidification processes by performing the generalized enthalpy method. Materials Science and Engineering: A 413-414, pp. 490 - 496 (2005)
Jiménez, J. A.; Carsi, M.; Frommeyer, G.; Knippscheer, S.; Wittig, J.; Ruano, O. A.: The effect of microstructure on the creep behavior of the ti-46al-1Mo-0.2Si alloy. Intermetallics 13, pp. 1021 - 1029 (2005)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Materials Science and Engineering A 387–389, pp. 950 - 954 (2004)
Deges, J.; Fischer, R.; Frommeyer, G.; Schneider, A.: Atom probe field ion microscopy investigations on the intermetallic Ni49.5Al49.5Re1 alloy. Surface and Interface Analysis 36, pp. 533 - 539 (2004)
Rablbauer, R.; Fischer, R.; Frommeyer, G.: Mechnical properties of NiAl–Cr alloys in relation to microstructure and atomic defects. Zeitschrift für Metallkunde 95 (6), pp. 525 - 534 (2004)
Fischer, R.; Frommeyer, G.; Schneider, A.: APFIM investigations on site preferences, superdislocations, and antiphase boundaries in NiAl(Cr) with B2 superlattice structure. Materials Science and Engineering A 353, pp. 87 - 91 (2003)
Frommeyer, G.; Brüx, U.; Neumann, P.: Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes. Iron and Steel Institue of Japan International Vol. 43 (3), pp. 438 - 446 (2003)
Frommeyer, G.; Hofmann, H.; Löhr, J.: Structural Superplasticity at High Strain Rates of Super Duplex Stainless Steel Fe-25Cr-7Ni-3Mo-0.3N. Steel Research 74 (5), pp. 338 - 344 (2003)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…