Raabe, D.: Recent Advances in Crystal Mechanics and Chitin Composites. Physics Colloquium at the Physics Department of the Technical University Dresden, Dresden, Germany (2006)
Godara, A.; Raabe, D.: Strain localization and microstructure evolution during plastic deformation of fiber reinforced polymer composites investigated by digital image correlation. Department Seminar, MPIE, Düsseldorf (Germany) (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.: Orientation microscopy on electrodeposited samples. 13th Conference and Workshop on Electron Backscatter Diffraction, Oxford, UK (2006)
Raabe, D.: Advances in Constitutive Modeling in Crystal Plasticity FEM. Colloquium Lecture at the Department for Aeronautics at the Massachusetts Institute of Technology, Cambridge, USA (2006)
Godara, A.; Raabe, D.: Micromechanical behavior of thermoplastic matrix composites by digital image correlation. SAMPE Europe - Society for the Advancement of Material and Process Engineering (SAMPE 2006), Paris (2006)
Roters, F.; Ma, A.; Zaafarani, N.; Raabe, D.: Crystal plasticity FEM modeling at large scales and at small scales. GAMM annual meeting, Berlin, Germany (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.: Three dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. DPG Frühjahrstagung, Dresden, Germany (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.: Characterization of microstructure and Texture of nanostructure electrodeposited NiCo samples by use of Electron Backscatter Diffraction (EBSD). DPG – Spring meeting, Dresden, Germany (2006)
Romano, P.; Barani, A.; Ponge, D.; Raabe, D.: Design of High-Strength Steels by microalloying and thermomechanical treatment. TMS 2006, San Antonio, TX, USA (2006)
Godara, A.; Raabe, D.: Influence of sterilization on the microscopic strain localization in carbon fiber reinforced PEEK composites for bone-implant applications investigated by digital image correlation. MRS Fall Meeting, Boston, MA, USA (2006)
Raabe, D.: Neues aus der Eisenzeit - Simulationen und Experimente in der Kristallmechanik und frischer Hummer. Lise-Meitner-Kolloquium, Hahn-Meitner-Institut (HMI), Berlin, Germany (2005)
Raabe, D.: Integrative Werkstoffmodellierung. Finalizing Conference of Sonderforschungsbereich SFB 370, together with an international Konferenz “Integral Materials Modeling”, Aachen, Germany (2005)
Sachs, C.; Fabritius, H.; Romano, P.; Raabe, D.: Viscoelastic Behavior of Lobster Cuticle as a Function of Mineralization Grade. MRS Fall Meeting, Boston, MA, USA (2005)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.