Betzler, S. B.; Koh, A. L.; Lotsch, B. V.; Sinclair, R.; Scheu, C.: Atomic Resolution Observation of the Oxidation of Niobium Nanowires: Implications for Renewable Energy Applications. ACS Applied Nano Materials 3 (9), pp. 9285 - 9292 (2020)
Zhang, S.; Diehl, L.; Wrede, S.; Lotsch, B. V.; Scheu, C.: Structural Evolution of Ni-Based Co-Catalysts on [Ca2Nb3O10]− Nanosheets during Heating and Their Photocatalytic Properties. Catalysts 10 (1), 13 (2020)
Zhang, S.; Diehl, L.; Lotsch, B. V.; Scheu, C.: Photocatalysts, cocatalysts, and a case study on their structural design. 1st International Meeting on Alternative & Green Energies, Mohammedia, Morocco (2018)
Zhang, S.; Diehl, L.; Lotsch, B. V.; Scheu, C.: In-situ heating study on the growth of NiOx nanoparticles on photocatalytic supports. International GRK 1896 Satellite Symposium “In Situ Microscopy with Electrons, X-rays and Scanning Probes, Erlangen, Germany (2017)
Zhang, S.; Diehl, L.; Lotsch, B. V.; Scheu, C.: NiOx cocatalysts on nanosheets for photocatalytic water splitting. nanoGe Fall Meeting 2018, Torremolinos, Spain (2018)
Gänsler, T.: Synthesis Approaches to Nb3O7(OH) Nanostructures and New Studies on Their Growth Mechanism. Master, Ludwig-Maximilians-Universität, München, Germany (2018)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
We apply our novel potentiostat approach to study the chemical reactions that take place during initial corrosion at the water-Mg interface under anodic polarization. Based on the gained insight, we derive an atomistic model that explains the origin of the anodic hydrogen evolution.