Ruh, A.; Spiegel, M.: Thermodynamic and kinetic consideration on the corrosion of Fe, Ni and Cr beneath a molten KCl-ZnCl2 micture. Corr.Sci. 48, pp. 679 - 695 (2006)
Ruh, A.; Spiegel, M.: Influence of gas phase composition on the kinetics of chloride melt induced corrosion of pure iron. Mater. and Corr. 57, pp. 237 - 243 (2006)
Ruh, A.; Spiegel, M.: Kinetic investigations on salt melt induced high temperature corrosion of pure metals. Materials Science Forum 461-464, pp. 61 - 68 (2004)
Ruh, A.; Spiegel, M.: Salt melt induced etching phenomena on metal surfaces. Eurocorr 2005, Lisbon, Portugal, September 04, 2005 - September 08, 2005., (2005)
Ruh, A.; Spiegel, M.: Influence of HCl and water vapour on the corrosion kinetics of Fe beneath molten ZnCl2/KCl. In: Proceedings of EUROCORR 04, 1. Proceedings of EUROCORR 04, Nice, France, 2004. (2004)
Ruh, A.; Spiegel, M.: Influence of gas phase composition on the kinetics of chloride melt induced corrosion. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Ruh, A.; Spiegel, M.: Kinetic investigations on salt melt induced high temperature corrosion of pure metals. 6th Int. Symposium on High Temperature Corrosion and Protection of Materials, Lez Embiez, France (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.