Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: Film thickness effects on the deformation behavior of Cu/Cr thin films on polyimide. TMS 2014: 143rd Annual Meeting & Exhibition, San Diego, CA, USA (2014)
Dehm, G.: Shedding light on the role of interfaces for strengthening materials by using micromechanical testing. 60. Metallkunde-Jubiläumskolloquium, Lech am Arlberg, Germany (2014)
Dehm, G.: Cu–Cr nanocomposites and multilayers. Gordon Research Conference: Thin Film & Small Scale Mechanical Behavior, Bentley University, Boston, MA, USA (2014)
Dehm, G.: Localized mechanical study of individual interfaces in miniaturized Cu structures. MS&T14 - Materials Science & Technology 2014, Pittsburgh, PA, USA (2014)
Imrich, P. J.; Kirchlechner, C.; Motz, C.; Jeon, J. B.; Dehm, G.: In Situ Electron Microscopy and Micro-Laue Study of Plasticity in Miniaturized Cu Bicrystals. CAMTEC III, Symposium on Fine-Scale Mechanical Characterisation and Behaviour , Cambridge, UK (2014)
Kirchlechner, C.; Imrich, P. J.; Motz, C.; Dehm, G.: Plastic deformation of bi-crystalline micro pillars analyzed by in situ µLaue diffraction. TMS2014, Annual Meeting & Exhibition, San Diego, CA, USA (2014)
Pizzagalli, L.; Dehm, G.; Thomas, O.: Structure and dynamics V: Mechanical properties at small scales. Condensed Matter in Paris: Mini-colloquium 32, Paris, France (2014)
Dehm, G.: From idealized bi-crystals towards applied polycrystals: Plastic deformation in small dimensions. 2013 MRS Fall Meeting, Boston, MA, USA (2013)
Dehm, G.: Structure and Micromechanics of Materials. Materialwissenschaftliches Kolloquium ICAMS und Institut für Werkstoffe, RUB, Bochum, Germany (2013)
Dehm, G.: Probing deformation phenomena at small length scales. ECI on Nanomechanical Testing in Materials Research and Development IV, Olhão, Portugal (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.