Todorova, M.; Surendralal, S.; Wippermann, S. M.; Deißenbeck, F.; Neugebauer, J.: Processes at solid/liquid interfaces – insights from ab initio molecular dynamics simulations with potential control. AMaSiS 2021 Online - Applied Mathematics and Simulation for Semiconductors and Electrochemical Systems, Berlin, Germany (2021)
Todorova, M.; Surendralal, S.; Wippermann, S. M.; Deißenbeck, F.; Neugebauer, J.: Insights into processes at electrochemical solid/liquid interfaces from ab initio molecular dynamics simulations. ICTP-Workshop on “Physics and Chemistry of Solid/Liquid Interfaces for Energy Conversion and Storage”, Virtual Meeting, Trieste, Italy (2021)
Deißenbeck, F.: Development of an ab initio electrochemical cell: Understanding the dielectric properties of interfacial water and Mg dissolution from first principles. Dissertation, Philipps-Universität Marburg, Germany (2024)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.