Nesselberger, M.; Ashton, S.; Meier, J. C.; Katsounaros, I.; Mayrhofer, K. J. J.; Arenz, M.: The particle size effect on the oxygen reduction reaction activity of Pt catalysts: Influence of electrolyte and relation to single crystal models. Journal of the American Chemical Society 133 (43), pp. 17428 - 17433 (2011)
Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Schüth, F.; Mayrhofer, K. J. J.: Electrode Materials for Electrochemical Energy Conversion. Electrochemistry 2012, Fundamental and Engineering Needs for Sustainable Development, München, Germany (2012)
Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Schüth, F.; Mayrhofer, K. J. J.: Role of Support Interactions for Activity and Stability of Fuel Cell Catalysts. ACS 15th Annual Green Chemistry & Engineering Conference, Washington, D.C., USA (2011)
Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Schüth, F.; Mayrhofer, K. J. J.: IL-TEM and IL-Tomography Stability Investigations of Fuel Cell Catalysts. 63rd Annual Meeting of the International Society of Electrochemistry, Prague, Czech Republic (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…