Palm, M.; Engberding, N.; Stein, F.; Irsen, S. H.; Kelm, K.: Phases, Phase Transformations and Evolution of Microstructures in Al-rich TiAl. ISPMA 12, 12th International Symposium on Physics of Materials, Prague, Czech Republic (2011)
He, C.; Stein, F.; Palm, M.; Voß, S.: Thermodynamic Assessment of the Fe–Nb and Fe–Al–Nb System. 3rd Sino-German Symposium on Computational Thermodynamics and Kinetics and Their Applications to Solidification and Solid-State Phase Transformation, Xi’an, China (2011)
Stein, F.; Palm, M.; Voß, S.; He, C.; Dovbenko, O. I.; Prymak, O.: Experimental Investigations of Phases, Phase Equilibria, and Melting Behaviour in the Systems Fe–Al–Nb and Co–Al–Nb and Their Terminal Binary Systems. Calphad XL, Rio de Janeiro, Brazil (2011)
Stein, F.: Laves Phases in Binary and Ternary Transition-Metal-Based Systems: Stability, Structure and Disorder. MRS Fall Meeting 2010, Boston, MA, USA (2010)
Palm, M.; Engberding, N.; Stein, F.; Kelm, K.; Irsen, S. H.: Formation of Phases, Phase Stability and Evolution of the Microstructure in Al-rich Ti–Al Alloys. MRS Fall Meeting 2010, Boston, MA, USA (2010)
Voß, S.; Stein, F.; Palm, M.; Raabe, D.: Compositional Dependence of the Mechanical Properties of Laves Phases in the Fe–Nb(–Al) and Co–Nb(–Al) Systems. MRS Fall Meeting 2010, Boston, MA, USA (2010)
Voß, S.; Stein, F.; Palm, M.; Raabe, D.: Mechanical Properties of Laves Phases in the Systems Fe–Nb(–Al) and Co–Nb(–Al) using Polycrystalline, Single-Phase Material. Materiels Science and Engineering 2010 (MSE), Darmstadt, Germany (2010)
Stein, F.; Lazace, J.: Kinetics of the Peritectoid Decomposition of the Intermetallic Phase Nb2Co7. PTM 2010, Solid-Solid Phase Transformations in Inorganic Materials, Avignon, France (2010)
Friák, M.; Deges, J.; Krein, R.; Stein, F.; Palm, M.; Frommeyer, G.; Neugebauer, J.: Combining Experimental and Computational Methods in the Development of Fe3Al-based Materials. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Stein, F.; Prymak, O.: Experimental Investigation of Phases and Phase Equilibria in the Ternary Fe–Al–Nb System. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Prague, Czech Republic (2009)
He, C.; Stein, F.; Palm, M.: Thermodynamic Assessment of the Nb–Co and Nb–Co–Al System. 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and Their Applications to Solidification, Kornelimünster, Aachen, Germany (2009)
Stein, F.; Prymak, O.; Dovbenko, O. I.; He, C.; Palm, M.; Schuster, J. C.: Investigation of Phase Diagrams of Laves Phase Containing Binary and Ternary Nb–TM(–Al) Systems with TM=Cr,Fe,Co. 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and Their Applications to Solidification, Kornelimünster, Aachen, Germany (2009)
Vogel, S. C.; Eumann, M.; Palm, M.; Stein, F.: Investigation of the crystallographic structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. TMS 2009 Annual Meeting, San Francisco, CA, USA (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…