Cherevko, S.; Topalov, A. A.; Žeradjanin, A. R.; Mayrhofer, K. J. J.: Coupling of electrochemistry and inductively plasma - Mass spectroscopy: Investigation of the noble metals corrosion. 59th International Conference on Analytical Sciences and Spectroscopy(ICASS)
, Mont-Tremblant, Canada (2013)
Topalov, A. A.; Cherevko, S.; Žeradjanin, A. R.; Mayrhofer, K. J. J.: Stability of Electrocatalyst Materials – A Limiting Factor for the Deployment of Electrochemical Energy Conversion? Third Russian-German Seminar on Catalysis “Bridging the Gap between Model and Real Catalysis. Energy-Related Catalysis”, Burduguz, Lake Baikal, Russia (2013)
Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Schüth, F.; Mayrhofer, K. J. J.: Electrode Materials for Electrochemical Energy Conversion. Electrochemistry 2012, Fundamental and Engineering Needs for Sustainable Development, München, Germany (2012)
Topalov, A. A.; Mayrhofer, K. J. J.: Kopplung ICP-MS mit Elektrochemie: Online Untersuchung von Materialkorrosion sowie Stabilität von Brennstoffzellenkatalysatoren. Anorganica 2012, Hilden, Germany (2012)
Cherevko, S.; Topalov, A. A.; Mingers, A.; Mayrhofer, K. J. J.: Effect of Cathodic Polarization on the Electrochemistry of Gold Surfaces. 63rd Annual Meeting of the International Society of Electrochemistry, Prague, Czech Republic (2012)
Cherevko, S.; Topalov, A. A.; Mingers, A. M.; Mayrhofer, K. J. J.: E_ect of Cathodic Polarization on the Electrochemistry of Gold Surfaces. 63rd Annual Meeting of the International Society of Electrochemistry
, Prague, Czech Republic (2012)
Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Schüth, F.; Mayrhofer, K. J. J.: Role of Support Interactions for Activity and Stability of Fuel Cell Catalysts. ACS 15th Annual Green Chemistry & Engineering Conference, Washington, D.C., USA (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.