Zaefferer, S.: An overview on techniques for high spatial resolution measurements of plastic and elastic strain by EBSD and related techniques. RexGG pre-conference workshop, Wollongong, Australia (2013)
Zaefferer, S.; Konijnenberg, P. J.: Advanced analysis of 3D EBSD data obtained from FIB-EBSD tomography. RexGG pre-conference workshop, Wollongong, Australia (2013)
Zaefferer, S.: An overview on techniques for high spatial resolution measurements of plastic and elastic strain by EBSD and related techniques. MicroCar 2013, Leipzig, Germany (2013)
Schemmann, L.; Zaefferer, S.: First experiences using a low-energy WDX spectrometer (LEXS) on a FEG-SEM for carbon determination on a martensitic steel. EMAS 2013, Porto, Portugal (2013)
Schemmann, L.; Zaefferer, S.; Raabe, D.: Influence of the inheritance of chemical elements on the transformation behaviour during intercritical annealing of DP steel strips. Euromat 2013, Sevilla, Spain (2013)
Zaefferer, S.: Techniques and application of 3D orientation microscopy based on EBSD tomography. GN-MEBA (groupement nationale de microscopie electronique a balayage) 2013, Paris, France (2013)
Zaefferer, S.: Combined Application of EBSD and ECCI for Crystal Defect Observation in Bulk Samples. GN-MEBA (groupement nationale de microscopie electronique a balayage) 2013, Paris, France (2013)
Zaefferer, S.; Elhami, N. N.: Theory and application of electron channelling contrast imaging (ECCI) of defects in metals. RMS EBSD 2013, Oxford, UK (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…