Kirchlechner, C.; Malyar, N.; Dehm, G.: Insights into dislocation grain-boundary interaction by X-ray µLaue diffraction. Dislocations 2016, West Lafayette, IN, USA (2016)
Kirchlechner, C.: Synchrotron based µLaue diffraction to probe plasticity at interfaces. IRSP 2016, 14th International Conference Reliability and Stress-Related Phenomena in Nanoelectronics – Experiment and Simulation
, Dresden, Germany (2016)
Kirchlechner, C.; Malyar, N.; Imrich, P. J.; Dehm, G.: Dislocation twin boundary interaction and its dependence on loading direction. 62. Metallkunde-Kolloquium, Lech am Arlberg, Austria (2016)
Kirchlechner, C.; Malyar, N.; Imrich, P. J.: X-ray microdiffraction Laue experiments to understand plasticity at interfaces. 80th Annual Conference of the DPG and DPG Spring Meeting, Regensburg, Germany (2016)
Jaya, B. N.; Köhler, M.; Schnabel, V.; Raabe, D.; Schneider, J. M.; Kirchlechner, C.; Dehm, G.: Micro-scale fracture behavior of Co based metallic glass thin films. 2016 TMS Annual Meeting and Exhibition Symposium: In Operando Nano- and Micro-mechanical Characterization of Materials with Special Emphasis on In Situ Techniques, Nashville, TN, USA (2016)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Davydok, A.; Jaya, B. N.; Micha, J.-S.; Kirchlechner, C.: Can We Analyze the Full Strain Tensor During a micro-Compression Experiment? A µLaue case study on Germanium. CNRS GDRi mecano: General Meeting
, Marseille, France (2015)
Dehm, G.; Imrich, P. J.; Malyar, N.; Kirchlechner, C.: Differences in deformation behavior of bicrystalline Cu micropillars containing different grain boundaries. MS&T 2015 (Materials Science and Technology) meeting, symposium entitled "Deformation and Transitions at Grain Boundaries", Columbus, OH, USA (2015)
Davydok, A.; Jaya, B. N.; Micha, J.-S.; Kirchlechner, C.: Can We Analyze the Full Strain Tensor During a micro-Compression Experiment? A µLaue case study on Germanium. Size & Strain
, Oxford, UK (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
In this project, we investigate the segregation behavior and complexions in the CoCrFeMnNi high-entropy alloys (HEAs). The structure and chemistry in the HEAs at varying conditions are being revealed systematically by combining multiple advanced techniques such as electron backscatter diffraction (EBSD) and atom probe tomography (APT).
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…