Eleno, L. T. F.; Balun, J.; Inden, G.; Schön, C. G.: Phase equilibria in the Fe–Rh–Ti system II. CVM Calculations. Intermetallics 15 (9), pp. 1248 - 1256 (2007)
Eleno, L. T. F.; Schön, C. G.; Balun, J.; Inden, G.: Experimental study and Cluster Variation modelling of the A2/B2 equilibria at the Ti-rich side of the Ti–Fe system. Zeitschrift für Metallkunde 95 (6), pp. 464 - 468 (2004)
Eleno, L. T. F.; Schön, C. G.; Balun, J.; Inden, G.: Prototype Calculations of B2 Miscibility Gaps in Ternary B.C.C. Systems with Strong Ordering Tendencies. Intermetallics 11, pp. 1245 - 1252 (2003)
Eleno, L. T. F.; Schön, C. G.; Balun, J.; Inden, G.: CVM calculations in the bcc Fe–Rh–Ti system. Calphad XXXIV – International Conference on Phase Diagram Calculations and Associated Subjects, Maastricht, The Netherlands (2005)
Eleno, L. T. F.; Balun, J.; Inden, G.; Houserova, J.; Schneider, A.: Experimental study and thermodynamic modelling of the Fe-Ta equilibrium phase diagram. TOFA, Discussion Meeting on Thermodynamics of Alloys, Wien, Austria (2004)
Balun, J.; Houserova, J.; Kroupa, A.; Inden, G.: The modelling of important intermetallic phases, existing in Fe-based systems by the combined CALPHAD and ab-initio approach. CALPHAD XXXIII, Krakow, Poland (2004)
Balun, J.; Inden, G.; Eleno, L. T. F.; Schön, C. G.: Phase Equilibria in the Ternary Fe–Rh–Ti System. TMS Annual Meeting 2003, International Symposium on Intermetallic and Advanced Metallic Materials – A Symposium dedicated to Dr. C.T. Liu, San Diego, CA, USA (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.