Han, F.; Diehl, M.; Roters, F.; Raabe, D.: Multi-scale modeling of plasticity. ICIAM 2019 - The 9th International Congress on Industrial and Applied Mathematics, Valencia, Spain (2019)
Sedighiani, K.; Diehl, M.; Roters, F.; Sietsma, J.; Raabe, D.: Obtaining constitutive parameters for a physics-based crystal plasticity model from macro-scale behavior. International Conference on Plasticity, Damage, and Fracture , Panama City, Panama (2019)
Diehl, M.; Kühbach, M.; Raabe, D.: Experimental–computational analysis of primary static recrystallizazion in DC04 steel. 9th International Conference on Multiscale Materials Modeling , Osaka, Japan (2018)
Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: DAMASK - Düsseldorf Advanced Material Simulation Kit. Seminar of the Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA (2018)
Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: DAMASK - Düsseldorf Advanced Material Simulation Kit. Seminar of the Department of Mechanical Engineering, Villanova University, Villanova, PA, USA (2018)
Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: DAMASK - The Düsseldorf Advanced Material Simulation Kit for Modeling Multi-Physics Crystal Plasticity, Thermal, and Damage Phenomena. WCCM 2018, 13th World Congress in Computational Mechanics, New York, USA (2018)
Han, F.; Diehl, M.; Roters, F.; Raabe, D.: Multi-scale modelling of sheet metal forming by coupling FEM with a CP-Spectral solver using the DAMASK modelling package. 10th European Solid Mechanics Conference (ESMC2018), Bologna, Italy (2018)
Roters, F.; Diehl, M.; Wong, S. L.; Shanthraj, P.; Raabe, D.: DAMASK: the Düsseldorf Advanced MAterial Simulation Kit for studying multi-physics crystal plasticity phenomena. 10 Years ICAMS - International Symposium, Bochum, Germany (2018)
Roters, F.; Diehl, M.; Shanthraj, P.: Coupled Experimental-Numerical Analysis of Strain Partitioning in Metallic Microstructures: The Importance of a 3D Neighborhood. Schöntal Symposium on 'Dislocation based Plasticity, Schöntal, Germany (2018)
Roters, F.; Sharma, L.; Diehl, M.; Shanthraj, P.: Including Damage Modelling into Crystal Plasticity Simulations using the Düsseldorf Advanced Material Simulation Kit DAMASK. Symposium Nano and Micro Scale Damage in Metals, Utrecht, The Netherlands (2018)
Diehl, M.; Shanthraj, P.; Roters, F.; Raabe, D.: Simulation Study on Plasticity and Fracture in Aluminium Based on Real Microstructures. TMS 2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…