Fabritius, H.-O.; Enax, J.; Wu, X.; Epple, M.; Raabe, D.: Structure-property relations in biological composite materials: An inspiration source for synthetic materials. 79th Annual Meeting of the DPG and DPG Spring Meeting 2015, Berlin, Germany (2015)
Fabritius, H.-O.: Alternative Präparationsmethoden für nichtmetallische Werkstoffe. Fachtagung Mikroskopie und Präparation (mikpräp) der Gesellschaft für Materialografie Rhein Ruhr e.V. (gmr2), Solingen, Germany (2015)
Fabritius, H.-O.: Structure-property relations in biological composite materials – The arthropod exoskeleton. Chemical Engineering and Materials Science Seminar, Michigan State University, East Lensing, MI, USA (2014)
Enax, J.; Fabritius, H.-O.; Roters, F.; Raabe, D.; Epple, M.: Synthetic dental composite materials inspired by the hierarchical organization of shark tooth enameloid. Third winter school within the DFG priority programme 1420 "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials", Potsdam, Germany (2014)
Huber, J.; Fabritius, H.-O.; Griesshaber, E.; Schmahl, W. W.; Ziegler, A. S.: Varying mechanical properties within the incisive cuticle of the terrestrial isopod Porcellio scaber resulting from region-dependent ultrastructure, elemental distribution and arrangement of calcite crystals. DGM Bio-inspired Materials: International Conference on Biological Material Science, Potsdam, Germany (2014)
Fabritius, H.-O.: Structure-property relations in biological composite materials. Seminar, Department of Earth- and Environmental Sciences, LMU Munich, München, Germany (2014)
Fabritius, H.-O.; Hennig, S.; Hild, S.; Soor, C.; Ziegler, A. S.: Influence of Near-Physiological Salines and Organic Matrix Proteins from Sternal ACC-Deposits of Porcellio scaber on CaCO3 Precipitation. 12th International Symposium on Biomineralization, Freiberg, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…