Torres, E.; Blumenau, A. T.; Biedermann, P. U.: Mechanism for phase transitions and vacancy island formation in alkylthiol/Au(111)self-assembled monolayers based on adatom and vacancy-induced reconstructions. Physical Review B 79 (7), pp. 075440-1 - 075440-6 (2009)
Pengel, S.; Niu, F.; Nayak, S.; Tecklenburg, S.; Chen, Y.-H.; Ebbinghaus, P.; Schulz, R.; Yang, L.; Biedermann, P. U.; Gygi, F.et al.; Schmid, R.; Galli, G.; Wippermann, S. M.; Erbe, A.: Oxygen reduction and water at the semiconductor/solution interface probed by stationary and time-resolved ATR-IR spectroscopy coupled to electrochemical experiments and DFT calculations. In: Program of the 8th International Conference on Advanced Vibrational Spectroscopy (ICAVS) – Oral Abstracts, pp. 130 - 131 (Eds. Lendl, B.; Koch, C.; Kraft, M.; Ofner, J.; Ramer, G.). 8th International Conference on Advanced Vibrational Spectroscopy (ICAVS), Vienna, Austria, July 12, 2015 - July 17, 2015. (2015)
Berezkin, A. V.; Biedermann, P. U.: Multiscale simulation of polyurethane network. World Polymer Congress 2012, Blacksburg, Virginia Tech, USA, June 24, 2012 - June 29, 2012. (2012)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain, June 26, 2011 - July 01, 2011. (2011)
Kenmoe, S.; Biedermann, P. U.: Water adsorption on non polar ZnO surfaces: from single molecules to multilayers. In APS March Meeting 2015, abstract #G8.011. APS March Meeting 2015 , San Antonio, TX, USA, March 02, 2015 - March 06, 2015. (2015)
Kenmoe, S.; Biedermann, P. U.: Water adsorption on non polar ZnO surfaces: from single molecules to multilayers. In DPG Spring Meeting 2015, Abstract: O14.12. DPG Spring Meeting 2015 , Berlin, Germany, March 16, 2015 - March 20, 2015. (2015)
Kenmoe, S.; Todorova, M.; Biedermann, P. U.; Neugebauer, J.: Impact of the vapour pressure of water on the equilibrium shape of ZnO nanoparticles: An ab-initio study. In APS March Meeting 2014, abstract #Q2.009. APS March Meeting 2014 , Denver, CO, USA, March 03, 2014 - March 07, 2014. (2014)
Kenmoe, S.; Todorova, M.; Biedermann, P. U.; Neugebauer, J.: Impact of the vapour pressure of water on the equilibrium shape of ZnO nanoparticles: An ab-initio study. In DPG Spring Meeting 2014, Abstract: O50.6. DPG Spring Meeting 2014 , Dresden, Germany, March 30, 2014 - April 04, 2015. (2014)
Biedermann, P. U.; Nayak, S.; Erbe, A.: The Mechanism of Electrochemical Oxygen Reduction: A Combined DFT and in-Situ ATR-IR Study on Model Semiconductor Surfaces Ge(100) and ZnO. 227th ECS Meeting, Chicago, IL, USA (2015)
Biedermann, P. U.; Nayak, S.; Erbe, A.: Catching intermediates of the oxygen reduction reaction in situ: Insights from electrochemical ATIR-IR and DFT. 112th Bunsentagung (Annual German Conference on Physical Chemistry), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2013)
Biedermann, P. U.; Nayak, S.; Erbe, A.: Towards Understanding the Mechanism of the Electrochemical Oxygen Reduction: DFT Modeling and Spectroelectrochemical Validation. Pacific Rim Meeting on Electrochemical and Solid-State Science PRIME 2012 / ECS 222, Honolulu, HI, USA (2012)
Nayak, S.; Biedermann, P. U.; Stratmann, M.; Erbe, A.: In situ Electrochemical ATR-IR Investigation of the Oxygen Reduction on Germanium. 62nd Annual Meeting of the International Society of Electrochemistry, Niigata, Japan (2011)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain (2011)
Berezkin, A. V.; Biedermann, P. U.: Simulation of polyurethane and water interac-tions with the ZnO surface: DFT and classical OPLS-AA force field calculation. 4-th World Congress on Adhesion and Related Phenomena, Arcachon, France 2010 (2010)
Biedermann, P. U.: Ab initio approaches to Solvation Free Energies and Single-Ion Chemical Potentials. Minisymposium "Challenges for Theory in Electrochemistry", MPI für Eisenforschung GmbH, Düsseldorf, Germany (2010)
In this project, we aim at significantly enhancing the strength-ductility combination of quinary high-entropy alloys (HEAs) with five principal elements by simultaneously introducing interstitial C/N and the transformation induced plasticity (TRIP) effect. Thus, a new class of alloys, namely, interstitially alloyed TRIP-assisted quinary (five-component) HEAs is being developed.
Interstitial alloying in high-entropy alloys (HEAs) is an important strategy for tuning and improving their mechanical properties. Strength can be increased due to interstitial solid-solution hardening, while interstitial alloying can simultaneously affect, e.g., stacking fault energies (SFEs) and thus trigger different deformation mechanisms…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
The Magnetic Moment Tensor Potentials (mMTPs) are a class of machine-learning interatomic potentials, which could accurately reproduce both vibrational and magnetic degrees of freedom as provided, e.g., from first-principles calculations [1]. Application to prototypical bcc iron has demonstrated that these potentials are capable to quantitatively…
The worldwide developments of electric vehicles, as well as large-scale or grid-scale energy storage to compensate the intermittent nature of renewable energy generation has generated a surge of interest in battery technology. Understanding the factors controlling battery capacity and, critically, their degradation mechanisms to ensure long-term…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…