Salgin, B.; Hamou, F. R.; Rohwerder, M.: Monitoring surface ion mobility on aluminum oxide: Effect of chemical pretreatments. Electrochimica Acta 110, pp. 526 - 533 (2013)
Özkanat, Ö.; Salgin, B.; Rohwerder, M.; Mol, J. M. C.; De Wit, H. J. H. W.; Terryn, H. A.: Erratum: Scanning Kelvin probe study of (oxyhydr)oxide surface of aluminum alloy (The Journal of Physical Chemistry C (2012) 116:2 (1805-1811) DOI: 10.1021/jp205585u). Journal of Physical Chemistry C 116 (10), p. 6505 - 6505 (2012)
Özkanat, Ö.; Salgin, B.; Rohwerder, M.; Mol, J. M. C.; Terryn, H. A.; De Wit, H. J. H. W.: A Combined Macroscopic Adhesion and Interfacial Bonding Study of Epoxy Coatings on Pretreated AA2024-T3. European Corrosion Congress (EUROCORR) 2010, Moscow, Russia, September 13, 2010 - September 17, 2010. Eurocorr2010, the European Corrosion Congress 3, pp. 2760 - 2768 (2010)
Salgin, B.; Rohwerder, M.: Ion Mobility Studies on Al2O3 Surfaces. 63rd Annual Meeting of the International Meeting of the International Society of Electrochemistry, Prague, Czech Republic (2012)
Salgin, B.; Rohwerder, M.: Mobility of water and charge carriers in polymer/oxide/aluminium alloy interphases. M2i-DPI Project Meeting at AkzoNobel, Sassenheim, The Netherlands (2012)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i/DPI Project Meeting, Düsseldorf, Germany (2012)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i/DPI Project Meeting, Eindhoven, The Netherlands (2011)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i Conference 2010, Noordwijkerhout, The Netherlands (2010)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i/DPI Project Meeting, Eindhoven, The Netherlands (2010)
Keil, P.; Salgin, B.; Vogel, D.; Rohwerder, M.: Applications of the Kelvin Probe: From ion mobilty to x-ray/sample interaction. Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany (2010)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i Cluster6 (Durability) Meeting, Velsen-Noord, The Netherlands (2010)
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.