Krüger, T.; Varnik, F.; Raabe, D.: Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method. Physical Review E 82 (025701) (2010)
Ayodele, S. G.; Varnik, F.; Raabe, D.: Effect of aspect ratio on transverse diffusive broadening: A lattice Boltzmann study. Physical Review E 80 (1), pp. 016304-1 - 016304-9 (2009)
Ayodele, S. G.; Varnik, F.; Raabe, D.: Transverse diffusive mixing of solutes in pressure driven microchannels: A Lattice Boltzmann study of the scaling laws. La Houille Blanche, International Water Journal 6, pp. 93 - 100 (2009)
Gross, M.; Varnik, F.; Raabe, D.: Fall and rise of small droplets on rough hydrophobic substrates. Europhysics Letters 88 (26002), pp. 26002-p1 - 26002-p6 (2009)
Varnik, F.; Raabe, D.: Scaling effects in microscale fluid flows at rough solid surfaces. Modeling and Simulation in Materials Science and Engineering 14, pp. 857 - 873 (2006)
Baschnagel, J.; Varnik, F.: Computer simulations of supercooled polymer melts in the bulk and in confined geometry. Journal of Physics: Condensed Matter 17 (32), pp. R851 - R953 (2005)
Varnik, F.; Bocquet, L.; Barrat, L.-J.: A study of the static yield stress in a binary Lennard-Jones glass. The Journal of Chemical Physics 120 (6), pp. 2788 - 2801 (2004)
Baschnagel, J.; Meyer, H.; Varnik, F.; Metzger, S.; Aichele, M.; Müller, M.; Binder, K.: Computer Simulations of Polymers close to Solid Interfaces: Some Selected Topics. Special Issue of Interface Science: Polymers at Interfaces 11, pp. 159 - 173 (2003)
Varnik, F.; Baschnagel, J.; Binder, K.; Mareschal, M.: Confinement effects on the slow dynamics of a supercooled polymer melt: Rouse modes and the incoherent scattering function. European Physical Journal E 12 (167) (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
In this project, we investigate the segregation behavior and complexions in the CoCrFeMnNi high-entropy alloys (HEAs). The structure and chemistry in the HEAs at varying conditions are being revealed systematically by combining multiple advanced techniques such as electron backscatter diffraction (EBSD) and atom probe tomography (APT).
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…