Krüger, T.; Varnik, F.; Raabe, D.: Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method. Physical Review E 82 (025701) (2010)
Ayodele, S. G.; Varnik, F.; Raabe, D.: Effect of aspect ratio on transverse diffusive broadening: A lattice Boltzmann study. Physical Review E 80 (1), pp. 016304-1 - 016304-9 (2009)
Ayodele, S. G.; Varnik, F.; Raabe, D.: Transverse diffusive mixing of solutes in pressure driven microchannels: A Lattice Boltzmann study of the scaling laws. La Houille Blanche, International Water Journal 6, pp. 93 - 100 (2009)
Gross, M.; Varnik, F.; Raabe, D.: Fall and rise of small droplets on rough hydrophobic substrates. Europhysics Letters 88 (26002), pp. 26002-p1 - 26002-p6 (2009)
Varnik, F.; Raabe, D.: Scaling effects in microscale fluid flows at rough solid surfaces. Modeling and Simulation in Materials Science and Engineering 14, pp. 857 - 873 (2006)
Baschnagel, J.; Varnik, F.: Computer simulations of supercooled polymer melts in the bulk and in confined geometry. Journal of Physics: Condensed Matter 17 (32), pp. R851 - R953 (2005)
Varnik, F.; Bocquet, L.; Barrat, L.-J.: A study of the static yield stress in a binary Lennard-Jones glass. The Journal of Chemical Physics 120 (6), pp. 2788 - 2801 (2004)
Baschnagel, J.; Meyer, H.; Varnik, F.; Metzger, S.; Aichele, M.; Müller, M.; Binder, K.: Computer Simulations of Polymers close to Solid Interfaces: Some Selected Topics. Special Issue of Interface Science: Polymers at Interfaces 11, pp. 159 - 173 (2003)
Varnik, F.; Baschnagel, J.; Binder, K.; Mareschal, M.: Confinement effects on the slow dynamics of a supercooled polymer melt: Rouse modes and the incoherent scattering function. European Physical Journal E 12 (167) (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.