Krüger, T.; Varnik, F.; Raabe, D.: Simulation of a dense suspension of deformable particles using the lattice Boltzmann method. ICMMES 2009, Guangzhou, China (2009)
Varnik, F.: Lattice Boltzmann studies of confined flows at intermediate Reynolds numbers: The role of wall roughness. The 5th International Conference for Mesoscopic Methods in Engineering, Amsterdam, The Netherlands (2008)
Varnik, F.: Stability and kinetics of droplets: A free energy based lattice Boltzmann study. DPG Spring Meeting of the Condensed Matter Division, Berlin, Germany (2008)
Gross, M.; Varnik, F.; Raabe, D.: Stability and kinetic of droplets: A free energy based lattice Boltzmann study. Sommer Workshop on Nano-& Microfluidics, Bad Honnef, Germany (2008)
Varnik, F.: Yield stress discontinuity: A manifest of the glass transition in a sheared glass. 369th Heraeus-Seminar, Interplay of Thermodynamics and Hydrodynamics in Soft Condensed Matter, Bad-Honnef, Germany (2006)
Varnik, F.: Shearing glassy model systems: A test of theoretical predictions on non linear rheology. 6th Liquid Matter Conference, Utrecht, The Nederlands (2005)
Varnik, F.: Confinement effects on the slow dynamics of a simulated supercooled polymer melt. International workshop on dynamics in viscous liquids, München, Germany (2004)
Varnik, F.: Glass Transition in Polymer Films: A Molecular Dynamics Study. International Conference on Computational Physics (CCP), Aachen, Germany (2001)
Varnik, F.: Propriétés statiques et dynamiques des couches minces de polymères. Les Journées de Rencontre Nationale sur les propriétés des verres, Montpellier, France (2001)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.