Aydin, U.; Hickel, T.; Neugebauer, J.: Combining ab initio with data mining techniques: Solution enthalpy of hydrogen in transition metals. DPG Frühjahrstagung 2012, Berlin, Germany (2012)
Aydin, U.; Hickel, T.; Neugebauer, J.: High-Throughput Computation: The solution enthalpy of hydrogen in 3d metals derived from first principles. International workshop on Materials Discovery by Scale-Bridging High-Throughput, Bochum, Germany (2010)
Aydin, U.; Hickel, T.; Neugebauer, J.: The solution enthalpy of hydrogen derived from first principles along the series of 3d metals. Ab initio description of Iron and Steel: Mechanical Properties, 468. Wilhelm und Else Heraeus-Seminar, Ringberg, Germany (2010)
Aydin, U.; Ismer, L.; Hickel, T.; Neugebauer, J.: Chemical trends of the solution enthalpy of dilute hydrogen in 3d transition metals, derived from first principles. Summer School: Computational Materials Science, San Sebastian, Spain (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.