Cao, Y. P.; Ma, D.; Raabe, D.: The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate. Acta Biomaterialia 5 (1), pp. 240 - 248 (2009)
Cao, Y. P.; Xue, Z. Y.; Chen, X.; Raabe, D.: Correlation between the flow stress and the nominal indentation hardness of soft metals. Scripta Materialia 59, pp. 518 - 521 (2008)
Cao, Y. P.: Determination of the creep exponent of a power-law creep solid using indentation tests. Mechanics of Time-Dependent Materials 11, pp. 159 - 173 (2007)
Balasundaram, K.; Cao, Y. P.; Raabe, D.: Investigating the Applicability of the Oliver & Pharr Method to the Nano-Mechanical Characterization of Soft Matter. Gerberich Symposium, 1st International Conference from Nanoparticles and Nanomaterials to Nanodevices and Nanosystems, Halkidiki, Greece (2008)
Balasundaram, K.; Cao, Y. P.; Raabe, D.: Nanomechanics characterization of softmatter using nanoindentation. 11th GLADD Meeting, TU Gent, Belgium (2008)
Balasundaram, K.; Cao, Y. P.; Raabe, D.: Nano-mechanical Characterization of Soft Matter. Materials science Day, Mechanical Engineering Department at Ruhr-University of Bochum, Bochum, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.