Race, C.; von Pezold, J.; Neugebauer, J.: Role of the mesoscale in migration kinetics of flat grain boundaries. Physical Review B 89 (21), 214110 (2014)
Nazarov, R.; Hickel, T.; Neugebauer, J.: Ab initio study of H-vacancy interactions in fcc metals: Implications for the formation of superabundant vacancies. Physical Review B 89 (14), 144108 (2014)
Hüter, C.; Nguyen, C.-D.; Spatschek, R. P.; Neugebauer, J.: Scale bridging between atomistic and mesoscale modelling: Applications of amplitude equation descriptions. Modelling and Simulation in Materials Science and Engineering 22 (3), 034001 (2014)
Todorova, M.; Neugebauer, J.: Extending the concept of defect chemistry from semiconductor physics to electrochemistry. Physical Review Applied 1 (1), 014001 (2014)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces: An ab initio approach. Physical Review B 89 (8), 085307 (2014)
Glensk, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Breakdown of the Arrhenius law in describing vacancy formation energies: The importance of local anharmonicity revealed by Ab initio thermodynamics. Physical Review X 4 (1), 011018 (2014)
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances