Glensk, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Understanding anharmonicity in fcc Materials: From its origin to ab initio strategies beyond the quasiharmonic approximation. Physical Review Letters 114 (19), 195901 (2015)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Ab initio-based bulk and surface thermodynamics of InGaN alloys: Investigating the effects of strain and surface polarity. Physica Status Solidi B 252 (5), pp. 855 - 865 (2015)
Ma, D.; Friák, M.; von Pezold, J.; Raabe, D.; Neugebauer, J.: Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation. Acta Materialia 85, pp. 53 - 66 (2015)
Todorova, M.; Neugebauer, J.: Connecting semiconductor defect chemistry with electrochemistry: Impact of the electrolyte on the formation and concentration of point defects in ZnO. Surface Science 631, pp. 190 - 195 (2015)
Albrecht, M.; Lymperakis, L.; Neugebauer, J.: Origin of the unusually strong luminescence of a-type screw dislocations in GaN. Physical Review B 90 (24), 241201 (2014)
Dutta, B.; Hickel, T.; Entel, P.; Neugebauer, J.: Ab Initio Predicted Impact of Pt on Phase Stabilities in Ni–Mn–Ga Heusler alloys. Journal of Phase Equilibra and Diffusion 35 (6), pp. 695 - 700 (2014)
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances