Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Effect of the atomic structure of complexions on the active disconnection mode during shear-coupled grain boundary motion. Physical Review Materials 8 (6), 063602 (2024)
Chauniyal, A.; Dehm, G.; Janisch, R.: On the role of pre-existing defects in influencing hardness in nanoscale indentations — Insights from atomistic simulations. Journal of the Mechanics and Physics of Solids 154, 104511 (2021)
Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Deformation mechanism of complexions in a Cu grain boundary under shear. FEMS EUROMAT 2023, Frankfurt am Main, Germany (2023)
Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Disconnection activation in complexions of a Cu grain boundary under shear. 19th International Conference on Diffusion in Solids and Liquids (DSL-2023), Heraklion, Greece (2023)
Pemma, S.; Brink, T.; Janisch, R.; Dehm, G.: Stress driven grain boundary migration for different complexions of a Cu tilt grain boundary. Materials Science and Engineering Congress 2022, Darmstadt, Germany (2022)
Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Atomistic simulation study of grain boundary migration for different complexions in copper. DPG-Tagung, Virtual (2021)
Arigela, V. G.; Kirchlechner, C.; Janisch, R.; Hartmaier, A.; Dehm, G.: Setup of a microscale fracture apparatus to study the interface behaviour in materials at high temperatures. Materials Day 2016, Ruhr Universitat Bochum, Bochum, Germany (2016)
Wang, Z.: Investigation of crystallographic character and molten-salt-corrosion properties of grain boundaries in a stainless steel using EBSD and ab-initio calculations. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…