Oellers, T.; Arigela, V. G.; Kirchlechner, C.; Pfetzing-Micklich, J.; Dehm, G.; Ludwig, A.: Combinatorial synthesis and characterization of binary Cu–Ag alloys in the form of microstructured thin films [Kombinatorische Synthese und Charakterisierung binärer Cu–Ag Legierungen in Form mikrostrukturierter dünner Schichten]. Metall 72 (11), p. 429 (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of binary Cu–X alloys produced by Combinatorial Synthesis. International conference on metallurgical coatings and thin films (ICMCTF) 2019, San Diego, CA, USA (2019)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of Copper-Silver- and Copper-Zirconium thin film libraries produced by combinatorial materials synthesis approach. Gordon Research Seminar on Thin Film and Small Scale Mechanical Behavior (GRS) 2018, Lewiston, ME, USA (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: Mechanical characterization of copper thin films produced by photolithography with a novel microscale high temperature loading rig. The International Conference on Experimental Mechanics, (ICEM) 2018, Brussels, Belgium (2018)
Arigela, V. G.; Kirchlechner, C.; Dehm, G.: Setup of a microscale high temperature loading rig for micro-fracture mechanics. Euromat 2017, Thessaloniki, Greece (2017)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: Setup of a microscale high temperature loading rig for micro-fracture mechanics with a novel temperature measurement approach. Advanced nano-mechanical techniques for academic and industrial research, Aachen, Germany (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: Temperature dependent mechanical characterization of sputtered Copper-Silver thin film tensile specimens produced by photolithography. Materials Chain International Conference, Bochum, Germany, Bochum, Germany (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of Copper-Silver- and Copper-Zirconium thin film libraries produced by combinatorial materials synthesis approach. GDRi Mecano General School 2018, Cargese, Corsica, France (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of Copper-Silver- and Copper-Zirconium thin film libraries produced by combinatorial materials synthesis approach. Gordon Research Seminar on Thin Film and Small Scale Mechanical Behavior (GRS) 2018, Lewiston, ME, USA (2018)
Arigela, V. G.; Kirchlechner, C.; Dehm, G.: Setup of a microscale high temperature loading rig for micro-fracture mechanics. GRi Mecano General meeting, Toulouse, France (2017)
Arigela, V. G.; Kirchlechner, C.; Janisch, R.; Hartmaier, A.; Dehm, G.: Setup of a microscale fracture apparatus to study the interface behaviour in materials at high temperatures. Materials Day 2016, Ruhr Universitat Bochum, Bochum, Germany (2016)
Arigela, V. G.: Development and application of a high-temperature micromechanics stage with a novel temperature measurement approach. Dissertation, Ruhr-Universität Bochum (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…