Zhang, J.; Tasan, C. C.; Lai, M.; Springer, H.; Raabe, D.: Microstructural and Mechanical Characterization of Cold Work Effects in GUM Metal. 9th International Conference on Advances in Experimental Mechanics, Cardiff, UK (2013)
Springer, H.; Kostka, A.: Verbinden von hochfestem Stahl mit einer Aluminiumlegierung durch Rührreibschweißen. 4. GKSS Workshop, Geesthacht, Germany (2009)
Belde, M. M.; Springer, H.; Inden, G.; Raabe, D.: Tailoring multi-phase steel microstructures by controlling local chemical gradients. MSE 2014, Darmstadt, Germany (2014)
Lai, M.; Tasan, C. C.; Zhang, J.; Grabowski, B.; Huang, L.; Springer, H.; Raabe, D.: ω phase accommodated nano-twinning mechanism in Gum Metal: An ab initio study. 3rd International Workshop on Physics Based Material Models and Experimental Observations: Plasticity and Creep, Cesme/Izmir, Turkey (2014)
Springer, H.: A novel roll bonding methodology for the cross-scale analysis of phase properties and interac-tions in multiphase structural materials. MSE 2014, Darmstadt, Germany (2014)
Springer, H.; Kostka, A.: Verbinden von hochfestem Stahl mit einer Aluminiumlegierung durch Rührreibschweißen. 4. GKSS Workshop, Geesthacht, Germany (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.