Ikeda, Y.; Körmann, F.; Tanaka, I.; Neugebauer, J.: Impact of chemical fluctuations on stacking fault energies of CrCoNi and CrMnFeCoNi high entropy alloys from first principles. Entropy 20 (9), 655 (2018)
Gong, Y.; Ikeda, Y.; Körmann, F.; Neugebauer, J.: Ab initio computation of phase stability and interstitial alloying in bcc compositionally complex alloys. International Conference on High-Entropy Materials (ICHEM 2023), Knoxville, TN, USA (2023)
Neugebauer, J.; Ikeda, Y.; Körmann, F.: Materials design based on efficient sampling of high dimensional chemical and thermodynamic configuration spaces. Workflows for Atomistic Simulations, Ruhr-Universität Bochum, Online Meeting, Bochum, Germany (2021)
Ikeda, Y.; Ishibashi, S.; Neugebauer, J.; Körmann, F.: Tuning stacking-fault energies and local lattice distortions in high-entropy alloys. Theory of Complex Disorder in Materials (TCDM2019) , Linköping, Sweden (2019)
Ikeda, Y.; Körmann, F.; Neugebauer, J.: Impact of Interstitial Alloying of High Entropy Alloys from First Principles. TMS 2019, San Antonio, TX, USA (2019)
Ikeda, Y.; Körmann, F.; Neugebauer, J.: Impact of chemical compositions and interstitial alloying on the stacking fault energy of CrMnFeCoNi-based HEAs from first principles. The 2nd International Conference on High-Entropy Materials , Jeju, South Korea (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…