Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G.: Fully ab initio supercell corrections for charged defects. CECAM workshop "Which Electronic Structure Method for the Study of Defects?", Lausanne, Switzerland (2009)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: What can EPR hyperfine parameters tell about the Si dangling bond? - A theoretical viewpoint. 1st International Workshop on the Staebler-Wronski effect, Berlin, Germany (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Role of the parasitic Mg3N2 phase in post-growth activation of p-doped Mg:GaN. DPG Frühjahrstagung, TU Dresden, Germany (2009)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: Ab-initio calculations of hyperfine parameters for various Si-dangling bond models. DPG spring meeting, TU Dresden, Germany (2009)
Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G.: Fully ab initio supercell corrections for charged defects. APS march meeting, Pittsburgh, PA, USA (2009)
Freysoldt, C.; Neugebauer, J.: Charged defects in a supercell formalism: From an empirical to a fully ab-initio treatment of finite-size effects. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Koprek, A.; Cojocaru-Mirédin, O.; Freysoldt, C.; Würz, R.; Raabe, D.: Atomic scale investigation of the p-n Junction in CIGS based solar cells: correlation between cell efficiency and impurities. E-MRS 2014, Lille, France (2014)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Gerstmann, U.: Ab initio EPR parameters for dangling-bond defect complexes in crystalle silion: The role of the Jahn-Teller distortion. Workshop on Advanced EPR for material and solar energy research, Berlin, Germany (2011)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: EPR parameters of the dangling bond defect in crystalline and amorphous silicon: A DFT-study. Euromat 2011, Montpellier, France (2011)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: EPR parameters of the dangling bond defect in crystalline and amorphous silicon: A DFT-study. MultiScale Modelling of Amorphous Materials: From Structure to Mechanical Properties, Dublin, Ireland (2011)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: EPR hyperfine tensors of the dangling bond defect in crystalline and amorphous silicon. Psi-k Conference 2010, Berlin, Germany (2010)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Role of the parasitic Mg3N2 phase in post-groth activation of p-doped Mg:GaN. ICNS-8, Jeju Island, South Korea (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Role of the parasitic Mg3N2 phase in post-growth activation of p-doped Mg:GaN. CECAM Workshop 09: Which Electronic Structure Method for the Study of Defects?, CECAM-HQ-EPFL, Lausanne, Switzerland (2009)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.