Pfanner, G.; Freysoldt, C.; Neugebauer, J.: Ab-initio calculations of hyperfine parameters for various Si-dangling bond models. DPG spring meeting, TU Dresden, Germany (2009)
Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G.: Fully ab initio supercell corrections for charged defects. APS march meeting, Pittsburgh, PA, USA (2009)
Freysoldt, C.; Neugebauer, J.: Charged defects in a supercell formalism: From an empirical to a fully ab-initio treatment of finite-size effects. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Koprek, A.; Cojocaru-Mirédin, O.; Freysoldt, C.; Würz, R.; Raabe, D.: Atomic scale investigation of the p-n Junction in CIGS based solar cells: correlation between cell efficiency and impurities. E-MRS 2014, Lille, France (2014)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Gerstmann, U.: Ab initio EPR parameters for dangling-bond defect complexes in crystalle silion: The role of the Jahn-Teller distortion. Workshop on Advanced EPR for material and solar energy research, Berlin, Germany (2011)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: EPR parameters of the dangling bond defect in crystalline and amorphous silicon: A DFT-study. Euromat 2011, Montpellier, France (2011)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: EPR parameters of the dangling bond defect in crystalline and amorphous silicon: A DFT-study. MultiScale Modelling of Amorphous Materials: From Structure to Mechanical Properties, Dublin, Ireland (2011)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: EPR hyperfine tensors of the dangling bond defect in crystalline and amorphous silicon. Psi-k Conference 2010, Berlin, Germany (2010)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Role of the parasitic Mg3N2 phase in post-groth activation of p-doped Mg:GaN. ICNS-8, Jeju Island, South Korea (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Role of the parasitic Mg3N2 phase in post-growth activation of p-doped Mg:GaN. CECAM Workshop 09: Which Electronic Structure Method for the Study of Defects?, CECAM-HQ-EPFL, Lausanne, Switzerland (2009)
Lange, B.: Limitierungen der p-Dotierbarkeit von Galliumnitrid: Eine Defektstudie von GaN:Mg auf Basis der Dichtefunktionaltheorie. Dissertation, Universität Paderborn, Paderborn, Germany (2012)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.