Nikolov, S. D.; Fabritius, H.-O.; Friák, M.; Raabe, D.: Integrated multiscale modeling approach for hierarchical biological nanocomposites applied to lobster cuticle. National Conference on Physics, Plovdiv, Bulgaria, October 10, 2014 - October 12, 2014. Bulgarian Chemical Communications 47 (B), pp. 424 - 433 (2015)
Sandlöbes, S.; Friák, M.; Dick, A.; Zaefferer, S.; Yi, S.; Letzig, D.; Pei, Z.; Zhu, L.-F.; Neugebauer, J.; Raabe, D.: Complementary TEM and ab ignition study on the ductilizing effect of Y in solid solution Mg–Y alloys. In: Proceedings of the 9th Intern. Conference on Magnesium alloys and their applications, pp. 467 - 472. 9th Intern. Conference on Magnesium alloys and their applications, Vancouver, Canada, July 08, 2012 - July 12, 2012. (2012)
Sandlöbes, S.; Schestakow, I.; Yi, S. B.; Zaefferer, S.; Chen, J.; Friák, M.; Neugebauer, J.; Raabe, D.: The relation between shear banding, microstructure and mechanical properties in Mg and Mg–Y alloys. 5th International Conference on Light Metals Technology V, Lüneburg, Germany, July 19, 2011 - July 22, 2011. Materials Science Forum 690, pp. 202 - 205 (2011)
Friák, M.; Deges, J.; Stein, F.; Palm, M.; Frommeyer, G.; Neugebauer, J.: Ab Initio Study of Elastic Properties in Fe3Al-Based Alloys. In: 2008 Materials Research Society Symposium Proceedings, Vol. 1128, pp. 59 - 64. Symposium on Advanced Intermetallic-Based Alloys for Extreme Environment and Energy Applications held at the 2008 MRS Fall Meeting, Boston, MA, USA, December 01, 2008 - December 05, 2008. (2009)
Friák, M.; Sander, B.; Raabe, D.; Neugebauer, J.: Theory-guided design of Ti-based binaries for human implants. Second Workshop on Theory meets Industry, Erwin-Schrödinger-Institute (ESI), Vienna, Austria, June 12, 2007 - June 14, 2007. Journal of Physics-Condensed Matter (6), 064221, (2008)
Nikolov, S.; Sachs, C.; Fabritius, H.; Raabe, D.; Petrov, M.; Friak, M.; Neugebauer, J.; Lymperakis, L.; Ma, D.: Hierarchical modeling of the mechanical properties of lobster cuticle from nano‐ up to macroscale: The influence of the mineral content and the microstructure. In: Proceedings of MMM 2008 "Computational Modeling of biological and soft condensed matter systems", pp. 667 - 670. 4th International Conference on Multiscale Materials Modeling, Tallahassee, FL, USA, October 27, 2008 - October 31, 2008. Dep. of Scientific Computing, Florida State University, USA (2008)
Dey, P.; Yao, M.; Friák, M.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab-initio investigation of the role of kappa carbide in upgrading Fe–Mn–Al–C alloy to the class of advanced high-strength steels. ArcelorMittal Global R&D Gent, Thessaloniki, Greece (2017)
Dey, P.; Nazarov, R.; Yao, M.; Friák, M.; Hickel, T.; Neugebauer, J.: Adaptive C content in coherently strained kappa-carbides - An ab initio explanation of atom probe tomography data. 2nd German-Austrian Workshop on "Computational Materials Science on Complex Energy Landscapes", Kirchdorf, Austria (2015)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.