Yang, B.; Motz, C.; Rester, M.; Dehm, G.: Yield stress influenced by the ratio of wire diameter to grain size – a competition between the effects of specimen microstructure and dimension in micro-sized polycrystalline copper wires. Philosophical Magazine Letters; Nano-mechanical testing in materials research and development III 92 (25-27), pp. 3243 - 3256 (2012)
Kiener, D.; Motz, C.; Rester, M.; Jenko, M.; Dehm, G.: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 459 (1-2), pp. 262 - 272 (2007)
Rester, M.; Cha, L.; Scheu, C.; Dehm, G.; Clemens, H. J.; Kothleitner, G.; Leisch, M.: Microstructure of a massively transformed high Nb containing γ-TiAl based alloy. In: 9th Multinational Microscopy Conference 2009, pp. 231 - 232 (Eds. Kothleitner, G.; Leisch, M.). 9th Multinational Microscopy Conference 2009, Graz, Austria, August 30, 2009. Verlag der Technischen Universität Graz, Graz, Austria (2009)
Kiener, D.; Jörg, T.; Rester, M.; Motz, C.; Dehm, G.: Conventional TEM Investigation of the FIB Damage in Copper. In: Proceeding 33rd Microscopy Conference, Deutsche Gesellschaft für Elektronenmikroskopie, pp. 100 - 101. 33rd Microscopy Conference, Deutsche Gesellschaft für Elektronenmikroskopie, Saarbrücken, Germany, September 02, 2007 - September 07, 2007. (2007)
Rester, M.; Kiener, D.; Kreuzer, H. G.M.; Dehm, G.; Motz, C.: Microstructural investigation of the deformation zone below nanoindents in copper, silver and nickel. Hysitron Workshop and Usermeeting, München, Germany (2006)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…